

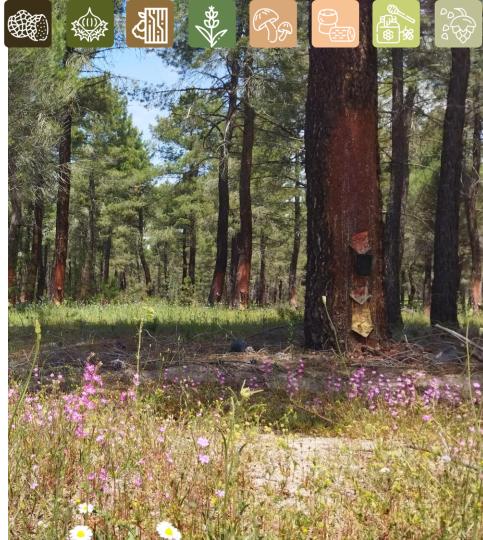


### Resultados de los ensayos BoreHole

### **Proyecto IMFOREST y CARES**



Aida Rodriguez García- Fundación Cesefor Línea de resinas, plantas aromáticas y medicinales




















## 2. Ensayos de resinación mecanizada con Bore Hole

- Resultados IMFOREST
  - Resultados CARES
    - Otros proyectos
      - Discusión



































Impulso a la bioeconomía forestal a través del desarrollo, la innovación y la gestión sostenible de los recursos forestales no madereros







El proyecto

Objetivos

Acciones













Mos











Proyecto CARES Y Comunicación Y Eventos Y Formación Y Suscríbete Contacto



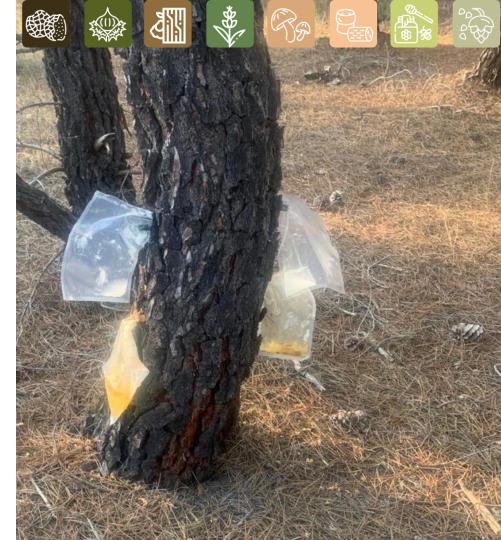




### Contexto de la jornada

Extracción mecanizada de resina como herramienta de gestión de sistemas multifuncionales.

BORE HOLE


- Tratamientos selvícolas
  - Castaña
  - Biomasa/madera
    - Incendios
      - Otros





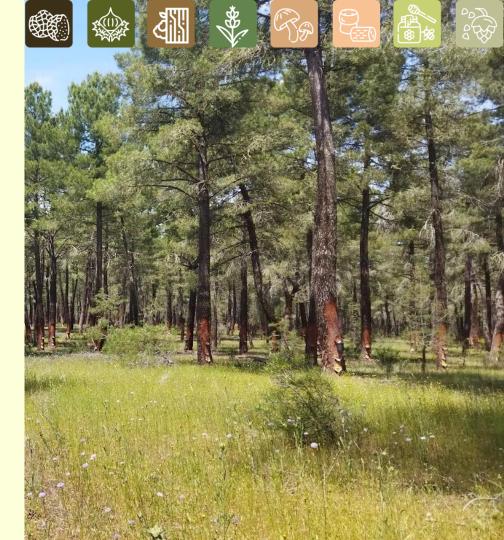








# 2. Ensayos de resinación mecanizada con Bore Hole


Living Lab Coca



















**Living Lab:** espacio de innovación abierta donde empresas, instituciones, ciudadanía e investigadores co-crean soluciones en contextos reales.

Colaboración

Entorno real

Participación activa de los actores





















**Living Lab Coca:** nuevas formas de aprovechamiento resinero en masas jóvenes de *Pinus pinaster* 

- aprovechamiento temprano del recurso
- aumento de la rentabilidad de las masas de pino
- <u>cofinanciación de los trabajos</u> <u>selvícolas</u>





RESIPINUS



### Material y Métodos





















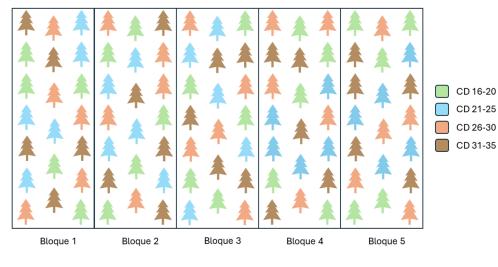











**Living Lab Coca:** nuevas formas de aprovechamiento resinero en masas jóvenes de *Pinus pinaster* 



CD 16-20 CD 21-25

CD 26-30

Ensayos de resinación mecanizada en CD < 35 cm





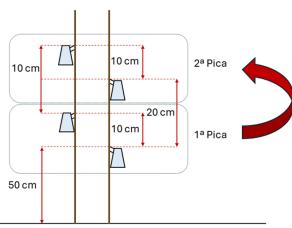
2 réplicas (tranzones) 105A 105B










**Living Lab Coca:** nuevas formas de aprovechamiento

resinero en masas jóvenes de *Pinus pinaster* 







Planta

Alzado

Perfil

Junio

Septiembre 4 Picas















MICS

















### Resultados



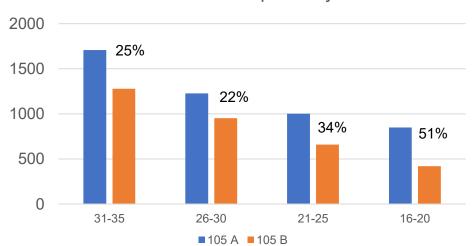

















### Producciones medias por CD y diferencia entre sitios

### Producción total por CD y sitio



### Diferencia entre sitios 30%

La diferencia es más acentuada en CD pequeñas

IMF-MUP105A

1.196,36 gr/campaña

IMF-MUP105B

827,49 gr/campaña

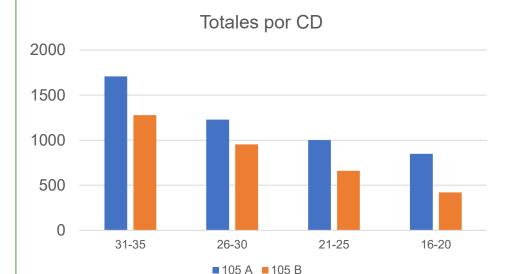



















## Diferencia y reducción entre Clases diamétricas



### Diferencia entre CD 20-30%

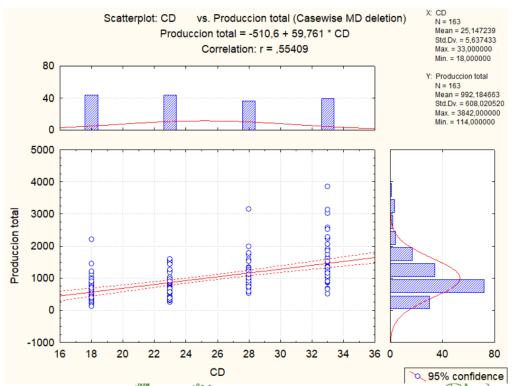
Reducción progresiva hasta 50%

- La reducción es más notable en 105 B
- Las últimas 2 CD son estadísticamente iguales

| SITIO | CD    | PRODUCCI<br>ÓN (gr) | Reducción |
|-------|-------|---------------------|-----------|
| 105 A | 31-35 | 1.708               |           |
| 105 A | 26-30 | 1.228               | 28 %      |
| 105 A | 21-25 | 1.001               | 18 %      |
| 105 A | 16-20 | 849                 | 15 %      |
| 105 B | 31-35 | 1.278               |           |
| 105 B | 26-30 | 952                 | 25 %      |
| 105 B | 21-25 | 660                 | 31 %      |
| 105 B | 16-20 | 420                 | 36 %      |










CD





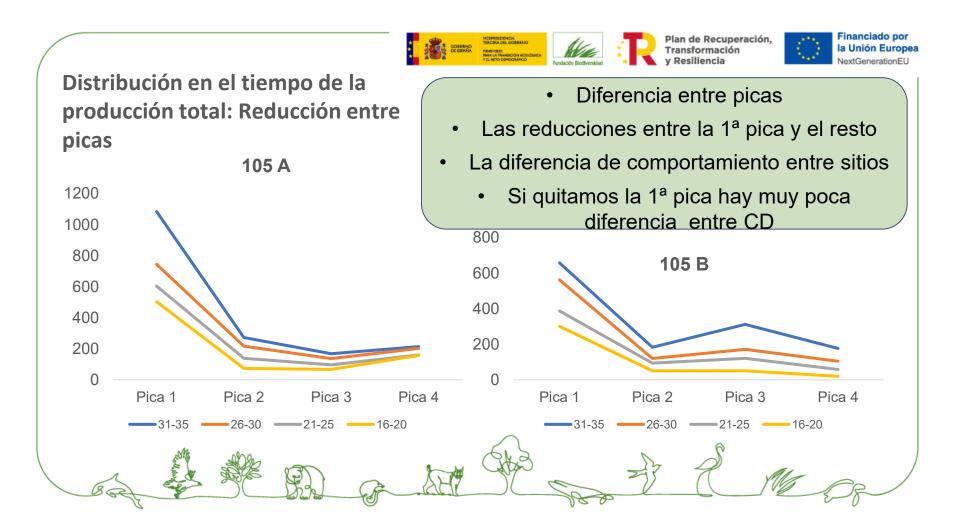


## Correlación diámetro producción clara

Más marcado en unas picas que otras

Correlations (Datos\_Ensayos\_Borehole)
Marked correlations are significant at p < ,05000
N=163 (Casewise deletion of missing data)
Pica 1 Pica 2 Pica 3 Pica4 Produccion
Variable

0.56


0.30

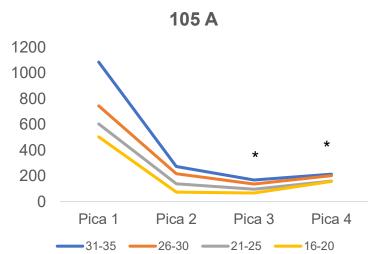


0.46



0.55





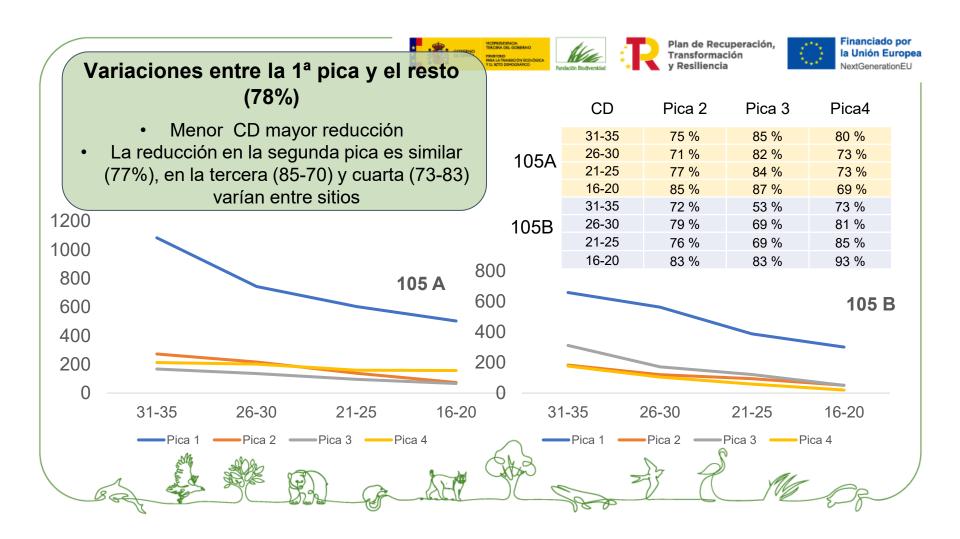







# Distribución en el tiempo de la producción total: Reducción entre picas




| SITIO | CD    | Pica 1 | Pica 2 | Pica 3 | Pica 4 |
|-------|-------|--------|--------|--------|--------|
| Α     | 31-35 | 1084   | 273    | 168    | 213    |
| Α     | 26-30 | 744    | 217    | 137    | 202    |
| Α     | 21-25 | 604    | 139    | 96     | 160    |
| Α     | 16-20 | 503    | 74     | 67     | 157    |
| В     | 31-35 | 658    | 183    | 312    | 176    |
| В     | 26-30 | 562    | 120    | 171    | 105    |
| В     | 21-25 | 387    | 94     | 121    | 58     |
| В     | 16-20 | 301    | 51     | 50     | 20     |



















**Living Lab Coca:** nuevas formas de aprovechamiento resinero en masas jóvenes de *Pinus pinaster* 

¿Posibles causas?

- Aumento de la superficie quemada
- Agotamiento
- Cambio de la metodología

El remanente ha sido minúsculo------Mover las bolsas?

A partir de la segunda pica baja tanto que no tendria sentido hacer mas de una?







# 2. Ensayos de resinación mecanizada con Bore Hole

Ensayos Proyecto CARES











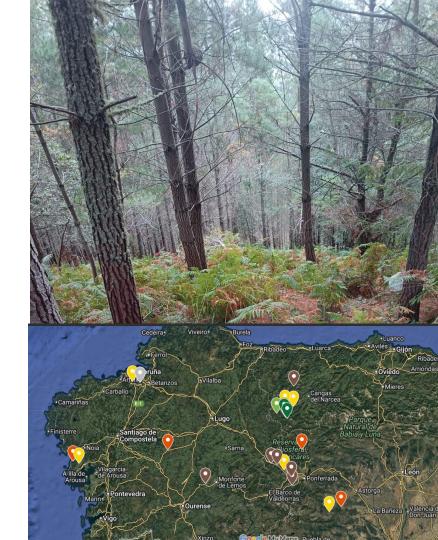


Parcelas de ensayo de innovación y de rendimientos P. radiata

Innovación 200 pies Producción por pica

Culleredo 2 Borehole
Ibias 3 Borehole

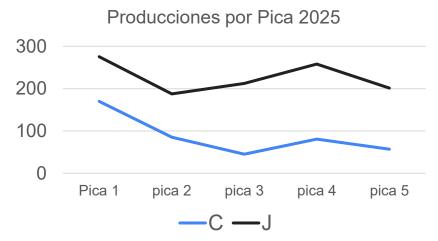
Rendimientos 2000 Pies Noveles y expertos Aprendizaje


Ibias 5BoreholeIbias 6Borehole













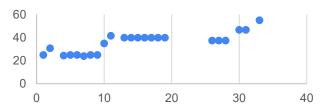

Innovación 200 pies Producción por pica 5 picas 2 trat

424,11 gr/campaña C 1120,32 gr/campaña J

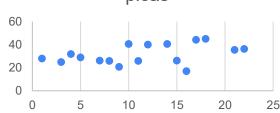













Mejora de rendimientos Novel 7 picas



Rendimientos experto 5 picas



- De 20 a 30 pinos/h de 2024 a 2025
- Topografia y transitabilidad
- Aprendizaje: experto –Novel (solo 2025)
- Materiales mejorados

Rendimientos 2000 Pies Noveles y expertos Aprendizaje











### 2. Ensayos de resinación mecanizada con Bore Hole

**Otros proyectos** 











#### **OTROS PROYECTOS**

ENSAYO DE VALIDACIÓN Y ADAPTACIÓN DEL NUEVO SISTEMA
DE RESINACIÓN MECANIZADA EN LA REGIÓN
DE CASTILLA LA MANCHA

Rewilding

 Actividad
 Pies/hora
 Num
 Minutos/pie

 Picas
 50
 4
 4,8

 Remasa
 40
 1
 1,5

 Total
 6,3

Tabla 8. Cálculo del tiempo de trabajo utilizado en cada pie en una campaña de resinación por método en Guadalajara

**RESULTADOS 2024** 

Spain

4 picas 1 bolsa por pica 100 gr/pica/bolsa

Los resultados medios de peso obtenidos para cada parcela en los diferentes métodos pueden verse a continuación.

|                 | Guadalajara      |                 | Cuenca           |                 |  |
|-----------------|------------------|-----------------|------------------|-----------------|--|
|                 | Pica tradicional | Pica mecanizada | Pica tradicional | Pica mecanizada |  |
| CON estimulante | 1.656,4          | 389,8           | 1.674,5          | 486,0           |  |
| SIN estimulante | 639,3            | 192,1           | 285,0            | 25,0            |  |

Tabla 5. Media pesos en gramos por provincia y método

Los resultados de la producción por método de resinación con estimulante a lo largo de la campaña en cada pica se muestran a continuación.

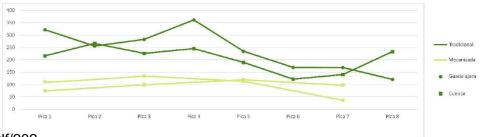



Figura 3. Producción promedio por pica y método

https://www.castillalamancha.es/sites/default/files/documentos/pdf/202 40111/informe\_ensayo\_mecanizacion\_2023.pdf









#### **OTROS PROYECTOS**

### https://acrema.es/wp-content/uploads/2023/04/FV-1.1-Informe-result.-comparativos-sist.-extraccion.pdf

### ADAPTACIÓN DE LA ACTIVIDAD RESINERA A MASAS DE PINO CON FINES PRODUCTORES DE MADERA



Gráfica 1. Producción total de resina para la campaña 2022 en función del método de extracción y especie.







Figura 4. Protocolo de trabajo empleado para el método de entalladura circular mecanizada.

13 picas 3 bolsa por pica

250 gr/pica y 80 gr/pica/bolsa









#### **CUESTIONES PARA EL DEBATE**

- ¿Por qué la caída de la producción tras la primera pica de Segovia no sucede en Asturias y otros proyectos?
- Para producciones muy bajas a penas se nota la diferencia entre CD (por debajo de 100gr/pica) pero la correlación con diámetro es clara
- Los rendimientos de Segovia de pinos/h son mejores que en Asturias? ¿pero cuanto?
   Modelos técnico-económicos
- ¿Hacer solo una pica en Segovia sería rentable?
- Cambiar la aplicación de pasta o el tipo de pasta
- Contrastar herramientas y metodologías
- Como afecta el número de bolsas









